skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Scalco, Michele"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Our understanding of the kinematic properties of multiple stellar populations (mPOPs) in Galactic globular clusters (GCs) is still limited compared to what we know about their chemical and photometric characteristics. Such limitation arises from the lack of a comprehensive observational investigation of this topic. Here we present the first homogeneous kinematic analysis of mPOPs in 56 GCs based on high-precision proper motions computed with Hubble Space Telescope data. We focused on red-giant-branch stars, for which the mPOP tagging is clearer, and measured the velocity dispersion of stars belonging to first (1G) and second generations (2G). We find that 1G stars are generally kinematically isotropic even at the half-light radius, whereas 2G stars are isotropic at the center and become radially anisotropic before the half-light radius. The radial anisotropy is induced by a lower tangential velocity dispersion of 2G stars with respect to the 1G population, while the radial component of the motion is comparable. We also show possible evidence that the kinematic properties of mPOPs are affected by the Galactic tidal field, corroborating previous observational and theoretical results suggesting a relation between the strength of the external tidal field and some properties of mPOPs. Although limited to the GCs’ central regions, our analysis leads to new insights into the mPOP phenomenon, and provides the motivation for future observational studies of the internal kinematics of mPOPs. 
    more » « less
  2. Abstract We exploit the astro‐photometric dataset of the multi‐epoch infrared parallel field of aHubble Space TelescopeLarge Programme aimed at studying the faintest stars of the globular cluster NGC 6752 to determine the luminosity and mass functions of the multiple stellar populations of this cluster. Thanks to the measurement of proper motions and deeper completeness, the results presented in this paper represent a significant improvement over those of previous studies. We successfully derived membership probabilities reaching stars as faint as , allowing us to reliably distinguish the three main stellar populations detected within this cluster. We employed a new set of model isochrones that have been individually fit to the colour–magnitude diagram of each population. We present a comprehensive analysis of the luminosity and mass functions for three stellar populations within NGC 6752. Notably, our findings reveal differences in the present‐day luminosity and mass functions of first‐generation and second‐generation stars; these differences are consistent with the manifestation of the effects of dynamical processes acting on populations with different initial spatial distributions. Finally, we publicly release the catalogues with positions, photometry, proper motions and memberships probabilities, as well as the stacked‐image atlases and all newly calculated stellar models. 
    more » « less